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Invariant Strings and Pattern-Recognizing 
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A cellular automaton is a discrete dynamical system whose evolution is gover- 
ned by a deterministic rule involving local interactions. It is shown that given an 
arbitrary string of values and an arbitrary neighborhood size (representing the 
range of interaction), a simple procedure can be used to find the rules of that 
neighborhood size under which the string is invariant. The set of nearest- 
neighbor rules for which invariant strings exist is completely specified, as is the 
set of strings invariant under each such rule. For any automaton rule, an 
associated "filtering" rule is defined for which the only attractors are spatial 
sequences consisting of concatenations of invariant strings. A result is provided 
defining the rule of minimum neighborhood size for which an arbitrarily chosen" 
string is the unique invariant string. The applications of filtering rules to pattern 
recognition problems are discussed. 

KEY WORDS: Cellular automata; invariant strings; pattern recognition; 
filtering. 

1. I N T R O D U C T I O N  

A cel lu lar  a u t o m a t o n  is a discrete m a t h e m a t i c a l  sys tem whose  t ime  
e v o l u t i o n  depend s  de te rmin i s t i ca l ly  o n  local  in te rac t ions .  Or ig ina l l y  
i n t r o d u c e d  by  y o n  N e u m a n n  a n d  U l a m  (11 as po t en t i a l  mode l s  for 

b io logica l  se l f - reproduc t ion ,  ce l lu lar  a u t o m a t a  have  since been  used as 

m a t h e m a t i c a l  tools  for s t u d y i n g  a wide var ie ty  of p rob lems .  (See Ref. 2 for 

a co l lec t ion  of ar t icles  on  the subject . )  In  genera l ,  a ce l lu lar  a u t o m a t o n  can  

be def ined  as a spa t ia l  la t t ice of  sites whose  va lues  at  each t ime step are  
d e t e r m i n e d  as a f u n c t i o n  of  the values  of  the " n e i g h b o r i n g "  sites at  the  
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previous time step. The site values are restricted to a finite set of integers, 
and specification of the function provides the "rule" governing the 
automaton's behavior. Consider, for example, cellular automata defined on 
a one-dimensional lattice of sites { x i , - ~ < i < ~ } ,  each of which can 
assume any of the values V = {0,..., k -  1 }. The general form of a rule for 
such an automaton is then given by 

xf +1 =f(x~_r,..., x~,..., x~+r) f: V 2 r + t ~ V  (1.1) 

where r ~> 0 represents the size (or radius) of the neighborhood considered 
by the rule, and the initial condition is specified by the values 
{x~ - ~  < i <  ~ }. Note that the function f is chosen to be independent of 
t and x I, and the site values are computed synchronously (in parallel) at 
each time step. 

This paper will explore two topics related to the existence of "invariant 
strings" for cellular automata. An invariant string of an automaton rule is 
defined to be a finite spatial sequence of site values that remains invariant 
under the rule, independent of the sequence's spatial position or the values 
of its neighboring sites. The first topic to be considered is the existence of 
invariant strings for rules with a fixed neighborhood size. Results will be 
presented for elementary rules (radius r equal to 1), but the analysis could 
be extended in a straightforward, albeit increasingly more cumbersome, 
fashion to the case of any fixed neighborhood size. Specifically, it will be 
shown in Section 2 that given an arbitrary string of O's and l's, a simple 
procedure can be used to construct the elementary rules under which the 
string is invariant. Furthermore, it is possible to provide a complete 
characterization of the set of elementary automata rules for which invariant 
strings exist, together with the set of invariant strings associated with each 
such rule. In addition, for a given rule R, an associated "filtering" rule R -  
(with the same radius) will be defined in Section 3 for which arbitrary 
initial conditions are mapped to spatial sequences consisting essentially of 
the invariant strings for R, and those invariant strings appear in the spatial 
sequences precisely where they did in the initial conditions. 

The second topic to be considered is the identification of rules of 
unspecified neighborhood size for which a given string is invariant. In par- 
ticular, Section 4 will characterize the automaton rule of minimal 
neighborhood size for which an arbitrarily chosen string represents the 
only invariant string. As the basis of this characterization, the concept of 
the "longest self-match" in a string will be introduced. The longest self- 
match is defined to be the longest tuple that occurs more than once in the 
string. The neighborhood size of the "minimal-radius" rule possessing the 
desired property will be shown to be determined by the length of the 
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longest self-match of the given string. Once the appropriate neighborhood 
size has been found, the rule itself is then easily constructed. 

The results on the existence of invariant strings have direct 
implications for the use of cellular automata in pattern recognition. The 
problem of defining a rule for which a given string is invariant is equivalent 
to the problem of defining a rule that will "recognize" a specified pattern in 
an arbitrary input sequence. The characterization of all strings that are 
invariant under a rule R is equivalent to the characterization of all patterns 
that can be recognized by R. Furthermore, the extension of automata rules 
to "filtering" rules provides a mechanism by which specified patterns in an 
input sequence will be preserved, and all others (representing "noise") 
annihilated. In particular, the result on the minimum neighborhood size of 
the rule for which a given string constitutes the only invariant string 
provides the unique automaton that represents an optimally efficient filter 
for that pattern. Moreover, the number of steps needed to filter for the pat- 
tern is bounded above by a quantity depending only on the pattern itself, 
and thus is independent of the actual input data. In sum, the problems of 
pattern recognition provide a natural context in which the mathematical 
results on invariant strings for cellular automata can be usefully exploited. 

2. INVARIANT STRINGS FOR ELEMENTARY CELLULAR 
A U T O M A T A  

"Elementary" cellular automata are defined (3~ by rules of the form 

xl +l : f ( x ; _  1, x~, x;+l) f:  {0, 1 } 3 ~  {0, 1} (2.1) 

i.e., the sites can assume either of the values {0, 1}, and only nearest- 
neighbor interactions are considered. A rule is therefore equivalently 
defined by specifying the value assigned to each of the 23 possible 3-tuple 
configurations of site values; i.e., by specifying the at, j = 0 ..... 7, such that 

000 001 010 011 100 101 110 111 

ao al a2 a3 a4 a5 a6 a7 

(In the remainder of this paper, the assignment of value a t to a tuple 
(x, y, z) will often be written as xyz---,aj; e.g., 000--* 0 or 011 ~ 1.) Since 
each a~e {0, 1}, there is a total of 223= 256 possible elementary rules. 
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This section will consider the existence of invariant strings for elemen- 
tary rules. The techniques are applicable in principle, although tedious in 
practice, to the case of rules with any fixed neighborhood size. Three 
aspects of the problem will be discussed. First, it will be shown that, given 
an arbitrary finite string of O's and l's, a simple procedure yields the 
elementary rules for which the string is invariant. Second, the set of rules 
for which invariant strings exist will be defined, and the set of invariant 
strings associated with each rule completely specified. Third, the ordering 
of sets of invariant strings associated with elementary rules will be used to 
induce an ordering of the rules themselves. 

Consider now the question of defining a rule under which a given 
finite string is invariant. 

Notation. * denotes a "wild card" symbol that assumes both of the 
values {0, 1 }. The use of * in a relation signifies that the relation holds for 
both * = 0  and * = 1. 

Notation. Let {X~oX'l."x~} denote a string of site values generated 
by a rule R at some time t. Then the string's image {x~ + lx~+ ~ . . . .  ;~,_'+ ~t } will 
be written as R{x 'oX] 'x 'n} .  

Definition. The string {Xto'"x~} = { X o " ' x . }  is an &variant string of 
�9 . .  , , }  = { x ; . . . x , , }  = rule R if R{*x~o x .  

The following theorems are stated without proof. 

T h e o r e m  1. Let {(x, y, z)} denote the set of possible 3-tuples of O's 
and l's, and let { P o " ' P , }  be a string with p~s{0,  1} for all O<<.i<<.n. 
Define rule R by 

* P o P 1  --* PO, P O P l  P2 ~ P l , . . .  

Pn- 2Pn lP, --* P , -  1, P, - I P, * --* P, (2.2) 

with arbitrary values assigned to 

{as=f (x ,  y, z)l (x, y, z) 

~(* ,  Po, Pl), ( P , - , ,  P~, *), (Pi-1, Pi, Pi+ 1); 1 <.i<.n} 

where f i s  the function defining the rule in (2.1). Then the string { P o ' "  Pn} 
is invariant under R. 
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T h e o r e m  2. Let R be a rule defined by (2.1). Define 

G = {(y, z ) I f (* ,  y, z) = y} 

H =  {(x, y)lf(x,  y, *)=  y} 

I =  {(x, y, z)lf(x, y, z)= y} 

Suppose an invariant string exists for R. Then G, H, and I must be non- 
empty, and there must exist a string { x 0 " x n }  where n > 0, (x0, xl) e G, 
(xn 1,xn)eH, and (xi_~,xi, xi+~)eI for l<~i<~n-1. Moreover, any 
such string is an invariant string for R. 

Remark 1. There are three essential results in Theorem 2: first, that 
the only rules with invariant strings are those for which the sets G and H 
are nonempty; second, that the length of an invariant string must be ~>2; 
and third, that the set of invariant strings for any rule can be deduced from 
the sets G, H, and L The third result is obtained by inspection. The first 
and second results are obtained from the necessary conditions derived in 
Ref. 4 for the generation of constant temporal sequences by nearest- 
neighbor rules. Note in particular that it was shown in Ref. 4 that a string 
of length 1 can in fact be constant under evolution of c&tain rules, but 
only under the assumption of particular symmetry properties satisfied by 
the entire automata. Strings of length 1 therefore do not satisfy the 
definition used in this paper of invariant strings. 

Remark 2. Suppose P =  { P 0 "  P,,} is an invariant string for some 
rule. There are two possibilities for the generation of P by the automaton: 
the string P may appear in the initial condition, or it may be generated at 
some time t >0,  and subsequently be preserved by the automaton. The 
above theorems do not distinguish between the two cases. A mechanism for 
doing so, in contexts where the objective is to detect the presence of 
invariant strings in the initial condition, is discussed in Section 3. 

Remark 3. If P =  {Po"P,,}  is an arbitrary string, then P will be 
invariant under any rule R defined as in Theorem 1. Clearly, R is not 
uniquely defined. Of the set of all possible rules R for which P is invariant, 
the rule that minimizes the number of other invariant strings is the rule 
that assigns 

f(x, y, z) = y iff (x,Y,Z)e{(*,Po, Pl),(Pn--I,Pn,*), 

(Pi 1,Pi, Pi+l);l<~i<~ n} 

= y'  otherwise (2.3) 

where y' :~ y. The following definition is therefore motivated. 
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Definition. Let P =  { P o " P n }  be an arbitrary string. Then the 
elementary rule induced by P is the rule uniquely defined by (2.2) and (2.3) 

Theorems 1 and 2, and the remarks that follow them, establish that, 
given an arbitrary string of values, it is indeed possible to construct the 
rules of radius 1 such that the string, together with a well-defined set of 
related strings, is invariant under the rules. (In fact, as will be discussed in 
Section 4, it is possible to do so for any specified radius.) Moreover, there 
is a unique rule (the rule induced by the string) that minimizes the number 
of other invariant strings. From Theorem 2, it can be seen that the class of 
elementary rules for which invariant strings exist can be specified exactly. A 
straightforward calculation using the Inclusion-Exclusion Principle shows 
that the number of elementary rules with invariant strings is 83. 

It is useful at this point to introduce the concept of a "string- 
generating" graph, examples of which are shown in Fig. 1. 2 The possible 
nodes of the graph are restricted to the set {00, 01, 10, 11}. Consider now 
any elementary rule R and the set I defined in Theorem 2. For each tuple 
(x, y, z) e/ ,  the nodes xy and yz are included in the graph, and an edge 
labeled z is drawn from node xy to node yz. Note that any elementary 
automaton rule (not merely those with invariant strings) can be assigned in 
this fashion a unique graph. Thus, for example, the "identity" rule (rule 
number 204 in the labeling scheme of Ref. 3) for which f (x ,  y, z) = y for 
all possible values of x, y, and z, is represented as shown in Fig. la, and 
its graph is the maximal possible graph. At the other extreme, the rule 
assigning {000, 001, 100, 101 } ~ 1, {010, 011, 1 t0, 111 } --. 0, is represented 
by the null graph. 

The advantage of string-generating graphs is that they facilitate con- 
struction of the set of invariant strings for any rule. In general, a string (not 
necessarily invariant) is generated by traversing a path in the graph. The 
label of the "start" node of the path provides the first two values in the 
string, and the label of each subsequent edge used by the path is then 
appended to the right of the string. Then Theorem 2 states that rule R has 
an invariant string iff there exists in the graph of R (i) a node (xy)' with 
incoming degree 2; (ii) a node (xy)" with outgoing degree 2; (iii) a path 
between (xy)' and (xy)". 

Moreover, any path beginning at (xy)' and ending at (xy)" represents 
an invariant string of the rule. Clearly, if the graph is such that (a) there 
exists a node xy with both incoming and outgoing degree 2, (b) every other 
node has both incoming and outgoing degree < 2, and (c) there is only one 
circuit beginning and ending at node xy, then every invariant string of the 

2 1 thank Stephen Wolfram for pointing out that graphs of this type have previously been 
studied by N. G. de Bruijn and I. J. Good. 
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Fig. 1. String-generating graphs. For each tuple xyz  for which a rule R assignsf(x, y, z) = y, 
the pairs xy  and yz  are included as nodes in the graph, and an edge labeled z is drawn from 
xy to yz. An invariant string for R is generated by choosing any node with incoming degree 2, 
continuing along any possible path for an arbitrary number of steps, and eventually ter- 
minating at any node with outgoing degree 2. The label of the "start" node is taken to be the 
first two values of the invariant string; each subsequent edge label for the path chosen is then 
appended on the right. (a) Rule 204: {000,001, 100, 101} ~0,  {010, 011, I10, 111}--* 1; 
(b) Rule 205: {001,100,101} ~ 0, {000,010,011,110,1ll}--*1; (c) Rule 201: {001,010, 
100, 101}-~0, {000,011, 110, 111}~1; (d) Rule 2O2: {010, 100, 101}--,0, {000,001, 011, 
110, 111} -~ 1; (e) Rule 203: {000, 010, 100, 101} -~0, {001, 011, 110, 111} -~ 1; (f) Rule 218: 
{010,101}~0, {000, 001, 011,100,110,111} ~1;  (g) Rule 219: {000,010,101}--,0, 
{001, 011, 100, 110, 111}~1; (h) Rule 251: {010}-,0, {000, 001, 011, 100, 101, 
110, I l l}  ---} 1. 

rule will be a repea ted  conca tena t ion  of  the invar ian t  str ing genera ted  by 
t ravers ing the circuit  exact ly  once (see Fig. lh) .  If, however ,  there exists 
more  than  one circuit  beginning  and ending at node  ~v, then the invar ian t  
strings can assume a more  var ied  form (see Fig. l a - g ) .  Fu r the rmore ,  given 
a g raph  for a rule R satisfying condi t ions  ( i ) - ( i i i ) ,  it is clear that  a rule R '  

will share a c o m m o n  set of invar ian t  str ings with R iff the g raph  of R '  does 
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not include any nodes or edges that permit a path different from those 
obtainable from the graph of R. It is easy to see, for example, by compar- 
ing the graph of Fig. la (representing the complete graph) and that of 
Fig. lh that there are 12 distinct rules for which strings of l's constitute the 
only possible invariant strings. 

The set of invariant strings for an elementary automaton can 
equivalently be characterized by specifying blocks of values that may not 
occur in the strings, together with the permissible beginning and ending 
string values. (See Ref. 5 for a discussion of the relation between excluded 
blocks and invariant strings.) For example, the sets of invariant strings 
shown in Fig. 1 can alternatively be described as 

(a) all strings 

(b) strings beginning and ending with 01, 10, or 11; and containing 
no 000 

(c) strings beginning with 01 or 11, ending with 10 or 11; and con- 
taining neither 000 nor 010 

(d) strings beginning with 11, ending with 10 or 11; and containing 
neither 010 nor 00 

(e) same as d 

(f) strings beginning with 11, ending with 11; and containing neither 
010 nor 00 

(g) same as f 

(h) all strings containing no 0 

Table I provides a list of all 83 elementary rules for which invariant strings 
exist, grouped according to their excluded blocks. 

A hierarchy of rules for which invariant strings exist is shown in 
Fig. 2. In the graph, each node N represents the set C of rules in whose 
invariant strings the block N of values may not occur. (Refer to Table I for 
a list of rules belonging to each set.) An edge is drawn between sets Ci and 
Cj if any string that is an invariant string for a rule belonging to set C s is 
also an invariant string for a rule belonging to Ci. Each path of the 
originating from the node "NONE" (representing the identity rule) 
corresponds to a particular choice of x, y, z e  {0, 1 } for which the con- 
ditions of Theorem 2 are satisfied. The ordering along each path reflects an 
ordering of the number of distinct permissible paths in the string- 
generating graphs of the corresponding rules; i.e., an ordering of the num- 
ber of tuples (x, y, z) for which the rule assigns f ( x ,  y, z)  = y. 
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Table I. List of Elementary Rules for which Invariant Strings Exist" 

Excluded bIocks Rule numbers Beginning values Ending values 

none 204 0,1 0,1 
000 205 01,10, 11 01,10,11 
010 200 00,0l, l l  00,10,11 
101 236 00,10,11 00,01,11 
111 76 00,01,10 00, 01,10 
000,010 201 01,11 10,11 
000,101 237 10,11 01, l l  
000,111 77 01,10 01,10 
010, 101 232 00,11 00, l l  
010,111 72 00~01 00,10 
101,111 108 00,10 00,01 
000, 010,101 233 11 11 
000,010, 111 73 01 10 
000,101,111 109 10 01 
010,101,111 104 00 00 
000,11 (a) 13,141 01,10 I0 

(b) 19, 69 01 01,10 
(c) 5,133 01 10 

111,00 (a) 78,79 10 01,10 
(b) 92, 93 01,10 01 
(c) 94, 95 10 01 

010,00 (a) 202,203 11 10,1l 
(b) 216,217 01,11 11 
(c) 218,219 11 11 

101,11 (a) 100,228 00 00,01 
(b) 44,172 00,10 00 
(c) 36, 164 00 00 

00, 11 (a) 70, 71,198,199 10 10 
(b) 28,29,156,157 01 01 

00 (a) 206,207 10,11 01,10,11 
(b) 220,221 01,10,11 01,11 
(c) 222,223 10,11 10,11 

11 (a) 68,196 00,01, 10 00,10 
(b) 4, 28 00, 01 00,01, t0 
(c) 132,140 00,01 00,10 

0 234,235,238,239,248,249 1 1 
250,251,252,253,254,255 

1 0,8,32, 40, 64,96, 128 0 0 
136,160,168,192,224 

Grouped according to the values that may not occur in the invariant strings and their per- 
missible beginning and ending values. For example, any string that begins and ends with 10 
and does not contain either 00 or 11, will be an invariant string of rules 70, 71, 198, and 199. 
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Fig. 2. Hierarchy of rules for which invariant strings exist. Each node N represents a set C 
of rules whose invariant strings exclude block N of values. (See Table I for a list of rules 
belonging to each set.) An edge is drawn between sets Ci and Ci of rules if any string that is 
invariant for a rule in set Cj is also invariant for a rule in Ci. 

3. F ILTERING RULES A N D  A P P L I C A T I O N S  TO PATTERN 
R E C O G N I T I O N  

This sect ion will discuss the extension of e l ementa ry  cel lular  a u t o m a t a  
rules to "fi l tering" rules. F i l te r ing  rules can l i teral ly be r ega rded  as a sub- 
class of rules that  depend  on nea res t -ne ighbor  in teract ions ,  but  tha t  a re  
defined on sites assuming  any  of three values ra ther  than  the usual  two. 
The th i rd  value can convenien t ly  be in te rpre ted  as a "b lank."  The  rules are  
te rmed "fi l tering" since they possess the p r o p e r t y  tha t  a rb i t r a ry  init ial  con- 
d i t ions  evolve to (or  are "fi l tered" for) spa t ia l  sequences c o m p o s e d  of  con- 
ca tena t ions  of  the invar ian t  str ings for e lementary  rules, separa ted  by 
blanks.  The b lanks  themselves  are  invar ian t  under  the fil tering rule, and  the 
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spatial sequence as a whole is therefore a fixed point for the automaton. 
Moreover, the invariant strings that appear in the spatial sequence are 
precisely the invariant strings present in the automaton's initial condition. 
Thus, given any initial condition for a filtering rule, it is possible to specify 
immediately the fixed point to which it will be attracted. The applications 
of filtering rules to pattern recognition will be discussed. 

Dofinition. The extended set V of values that can be assumed by 
the sites of a cellular automaton (1.1) is defined as V- = Vw {_}, where 
V = {0 ..... k -  1 } and _ denotes "blank." 

Dofinition. Let {x ~ } be an arbitrary finite initial condition such that 
x ~ = 0 for i < M, i > N, and x ~ = X0N = 1. Then the truncated initial condition 
is defined as {yO} with 

y~  x~ M <~ i ~ N 

= _ otherwise 

Dofinition. 
by (2.1). Then define the filtering rule R -  to be 

xS+l=f-(x; 1,XS, X~+I) f :  {- ,0,  1} 3 

with 

Let R be an elementary cellular automaton rule defined 

f -(x,  y , z ) =  y if f ( x ,  y , z ) =  y 

= _  if f ( x , y , z ) r  

f - ( _ , y , z ) = y  if f ( * , y , z ) = y  

f - ( x , y , _ ) = y  if f ( x , y , * ) = y  

f (x, y, z) = _  otherwise 

--. {_, 0, 1} (3.1) 

(3.2) 

(3.3) 

(3.4) 

T h e o r e m  3. Let S be the set of invariant strings for the elementary 
rule R. Assume the initial condition has the form 

{ x ~ M <~ i <~ N} = { DoB, D 1. . . Dj_ , BjDj . . . BnDn } 

where Bj ~ S, Dj ~ S for all j and n ~> 0. Then for t >/max len(Dj), the spatial 
sequences obtained by applying the filtering rule R -  to the truncated initial 
condition are of the form 

{ - -B1--B2-- '"  " - - B n - - }  
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ProoL Consider the images under the filtering rule R of the string 
Dj. For  j = l , . . . , n - 1 ,  the string D j = { d l d 2 " " d q  idq} ,q=len(Dj) ,  is 
"embedded" in the configuration BjDjBj+ ~. Let Bj=  { b ~ b 2 " b p _  xbp} and 
Bj+I = {ClC2"''Cr--lCr} for some p, r, and define do=bp, dq+~=Cl. Then 
Theorem 2 implies that 

f ( d k _  ~, dk, dk + 1) r dk 

for some 1 ~< k ~< q, since otherwise the string would be invariant. Further- 
more, by the same reasoning, for any 1 < m < q there exists a y e {0, 1 } 
such that 

and a z e {0, 1 } such that 

f ( d ~  _ 2, d,,, _ 1, Y) r d,~_ 1 

f ( z ,  dm+x, d,,,+ 2)=A d~ + 1 

Hence the filtering rule R -  assigns 

and furthermore. 

f - (dk_  1, dk, dk+ , ) = -  

f - ( d k _ 2 ,  d k _ l , - )  = - 

i.e., the blanks propagate to the left, and 

f (-, dk+,,  dk+2) = -  

i.e., the blanks propagate to the right. Thus in a finite number of time steps 
bounded above by len(Dj), the string Dj will be mapped onto a string of 
blanks. The argument for Do and Dn is similar. For  these cases, the use of 
the truncated initial condition implies that the strings are embedded as 
shown 

- - .DoB1  and B . D . _ _  

The proof then proceeds as for the first case. 

Remark. It is mentioned in Section 2 that the invariant strings 
generated by automata rules are of two types: those that are present in the 
initial condition at time t = 0, and those that are generated at some later 
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time t>0 .  Theorem 3 establishes that for "filtering" rules, an invariant 
string of the associated elementary rule will be preserved only if it appears 
in the initial condition. All other strings (in particular, those that would, 
under evolution of the elementary rule, generate invariant strings at some 
later time) will be "annihilated." Thus, every initial condition for a filtering 
rule will evolve to a spatial sequence composed of invariant strings appear- 
ing precisely where they did in the initial condition, with blanks everywhere 
else. Since the blanks themselves are invariant, the spatial sequence is a 
fixed point for the rule, and spatial sequences of this form are the only 
attractors of the automaton. 

In the special case that an elementary rule has been induced by a par- 
ticular string, the definition of the associated filtering rule can be modified 
slightly so as to restrict even further the spatial sequences that serve as 
attractors for the rule. 

Definition. Let R be the elementary rule induced by the string 
{P0"" Pn}. Define the string-filtering rule R-(pop~, Pn-IP~) to be the rule 
satisfying conditions (3.1), (3.2), and (3.4), but with condition (3.3) 
replaced by 

f - ( - ,  Po, Pl) = Po 
(3.3a) 

f (Pn-~,P,,.-)=P~ 

Theorem 4. Let R be the elementary rule induced by the string 
{P0 .... p,,}, and let S(poPl, Pn--~Pn) be the set of invariant strings of R 
that begin with the values PoP1 and end with the values p,_ ~p,. Then the 
spatial sequences obtained by applying the string-filtering rule 
R (PoPl,P, IP~) to the truncated initial condition consist of strings 
belonging to S(pop, , P,,-1P,) separated by blanks. 

Proof. The proof follows along the lines as for Theorem 3. 

Consider now the use of cellular automata in pattern recognition. The 
relevant problem is the "recognition" by an automaton of a specific pat- 
tern, or string of O's and l's, in an arbitrary input sequence. Denote the 
pattern by {P0"" Pn}. Theorem 1 of this paper states that the pattern will 
be "recognized," or preserved, by any rule R defined with 
*PoP~ ~Po,..., P,-IPn *--*Pn, and the other values aj to be assigned by 
the rule left unconstrained. Theorem 2 then provides the set of other strings 
that will also be recognized by the rule R. The rule induced by the string is 
defined as the unique rule that assigns aj=f(x, y, z)say for {xyz} not 
appearing in {PoP~"'Pn-~Pn}, thus minimizing the number of other pat- 
terns preserved. From Theorem 4, the associated string-filtering rule 

822/43/1-2-17 
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possesses the property that only those invariant strings that begin and end 
with the same values as the pattern, and that appear in the initial con- 
dition, will be preserved by the automaton. Any other string, representing 
"noise" in the input, will be annihilated. Note that the computation of site 
values can be performed in parallel. 

Figure 3 provides an example illustrating the use of filtering rules. The 
pattern 10011 is to be recognized, and the input sequence is taken to be a 
random sequence of O's and l's containing that pattern, along with others. 
In accordance with Theorems 2 and 4, the rule is chosen to be 

{001,100} --+ 0; {010, 011,110, 111} --* 1; {_ 10, 11_} ~ 1 

with all other tuples assigned the value _. The associated elementary rule 
number is therefore 237 (according to the labeling scheme of Ref. 3). The 
string-generating graph of the rule is given by Fig. 3c, and from Table I, it 
can be seen that any string beginning with 10, ending with 11, and not con- 
taining either 000 or 101, will be preserved by the rule. 

pat tern  to  be recognized: 

i0011 

radius of r111e used: 1 

Input sequence: 

011100110111001001100011001111100110100001010001110101001101111110101000 

evolution o f  autmton: 

011100110111001001100011001111100110100001010001110101001101111110101000 
1110011 11100100110 01100111110011 I0 01 10 0111 i 10011 111111 1 10 
ii0011 110010011 1100111110011 1 1 111 10011 11111 1 
10011 10010011 100111110011 11 10011 1111 
10011 i0010011 100111110011 1 10011 111 
i0011 i0010011 100111110011 10011 ii 
10011 I0010011 100111110011 i0011 1 
I0011 10010011 100111110011 i0011 
i0011 10010011 100111110011 10011 
10011 i0010011 100111110011 10011 
10011 10010011 100111110011 10011 

Fig. 3. Example of filtering. The pattern to be recognized is the string 10011 embedded in an 
arbitrary input sequence. An appropriate elementary rule is extended to provide an 
automaton that generates blanks as well as O's and l's. An automated procedure constructs 
both the rule and its extension so as to guarantee that the string will be preserved, and the 
number of other preserved patterns minimized. Under evolution of the extended rule, the 
desired pattern, along with any string beginning with 10, ending with 1l, and not containing 
any occurrences of either 000 or 101, is preserved, and all others annihilated in a small num- 
ber of time steps. 
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4. M I N I M A L - R A D I U S  F ILTERING RULES 

The filtering rules described in Section 3 were based on elementary 
cellular automata involving only nearest-neighbor interactions. The attrac- 
tors for these rules were shown to be spatial sequences composed of con- 
catenations (separated by blanks) of the invariant strings for the associated 
elementary rules. Since, as was shown in Section 2, an elementary rule may 
possess multiple distinct invariant strings, the attractors are therefore 
highly nonunique. In this section, it will be shown that given an arbitrary 
string, it is possible to define a rule of minimal neighborhood size for which 
the string will be the unique invariant string, and therefore every initial 
condition evolves to a spatial sequence consisting only of occurrences of 
that string together with blanks. Moreover, an upper bound (depending 
only on the invariant string itself) is provided for the number of iterations 
required to attain the final state. 

The following theorem is an obvious generalization of Theorem 1. 

T h e o r e m  5. Let R be a rule of radius r defined by 

t + l  _ _  t t t 
X i - - f ( x  i ...... , X i+  Xi," '~ r) 

and let {Po'"P~} be an arbitrary string. Define the set J to be the set of 
tuples (q ..... , qr) obtained by setting, for each fixed k = 0,..., n 

qj=Pk+j j=-r, . . . ,O, . . . ,r  if O<~k+j<~n 

= * otherwise 

Suppose the function f assigns 

q - - r ' ' ' q0 ' ' ' q r - -*  q0 

for each tuple in J. Then the string { P o "  Pn} is an invariant string for R. 
As is the case for nearest-neighbor rules, the rules defined in 

Theorem 5 are not unique, and must be further constrained in order to 
obtain the rule that minimizes the number of other invariant strings. 

Definition. The rule of  radius r induced by the string { Po '"  P, } is the 
unique rule defined as in Theorem 5 that assigns, in addition 

X i r ' ' ' . ) C i ' ' ' X i + r - - - - ~ X ~  

where x; #x i ,  for all tuples (xi ..... , x~+r)r 



258 Jen 

The induced rule of radius r can be extended in the obvious way to 
define an associated string-filtering rule R . The objective of this section is 
then to derive the minimum value of the radius r for which the given string 
will constitute the unique invariant string of the induced rule of radius r. In 
this context, "uniqueness" of an invariant string P is to be understood as 
implying that the only strings invariant under the rule consist of con- 
catenations (possibly overlapping) of P. In order to eliminate ambiguity in 
the definition of a rule, it will be assumed throughout that the 
neighborhood of the rule is of odd length; i.e., the length of the rule is given 
by 2r + 1. 

The next theorem provides an obvious upper bound on the size of the 
neighborhood needed to guarantee uniqueness of the invariant string. 

T h e o r e m  6. The string { P 0 ' " P ~ }  is the unique invariant string of 
the induced rule of neighborhood radius r ~> n. 

The results that follow will provide the exact value of the minimal 
neighborhood size needed to guarantee uniqueness of the invariant string. 
The major tool used in the derivation of these results will be the charac- 
terization of an arbitrary string by the length of its longest self-match, 
defined to be the length of the longest tuple that occurs more than once in 
the string. 

Definition. A string { P o "  P~ } possesses a self-match of length m > 0 
if there appear in the string two tuples (Pi,..., Pi+,~ 1) and (pj,..., Pj+m l) 
for which pi+k=pj+k, i r  k = 0,..., m -  1. 
Now define 

Set 

m 1 = length of longest self-match with either i = 0 and j + m - 1 < n 

o r i > O a n d j + m -  1 =n 

m2 = length of longest self-match otherwise 

(i.e., either i = 0 and j + m - 1 = n, or i > 0, and j + rn - 1 < n) 

r l = m l + l  

r2 = (m2 + 1 )/2, m~ odd 

= (m2 + 2)/2, m2 even 

Then the following theorem provides the desired result. 

(4.1) 

T h e o r e m  7. Let P =  { P o ' " P n }  be a string. Then the induced rule 
of radius r * =  max(r 1, r2), with rl and r 2 defined as in (4.1), is the minimal- 
radius rule for which the string P is the unique invariant string. 
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Proof. First show that  an induced rule R of radius r < r* will have 
more  than  one distinct invar iant  string. Suppose  that  r* = r l ,  and assume 
that  m = r l - 1  is the largest  value such that  there exists a tuple 
(Po,..., Pm-1) that  "matches"  the tuple (Pj,..., P j + m - 1 )  for some 
O < j < n - m +  1. The case being considered is therefore i = 0  and 
j + m - l < n .  The strategy for this case is to show that  X = { x k } ,  
k = 0,..., n + j - 1, where 

Xk = Pk k = O , . . . , j + m - 1  

k = j + m  ..... n + j - 1  

(Pj,...,Pj+m l) for i > 0  and j + m - l < n .  Show that  X = { x k } ,  
k = 0,..., n + i - j, where 

Xk=Pk k = 0,..., i + r n -  1 

=Pk i+j k = i + m  ..... n + i - - j  

is an invar iant  string of R. String X is const ructed so that  its first i +  m 
values coincide with those of P, but the values to the right o f p i + m - 1  are 
those that  follow P j+m-1  in P; i.e., the block P~+m'''Pj+m 1 does not  
appea r  in X. Then every subtuple  of length rn + 1 in X appears  somewhere  
in P. Hence,  if the rule has radius r <~ m/2, the invar iant  string P will not  be 
unique. 

The case in which i = 1 and j + m -  1 = n can be regarded as a special 
case of  the previous one where now the string x is taken to be 
{xk}, k = 0,..., m - 1, with 

x ~ = p k  k = O  ..... m - - 1  

It has thus been shown that  any induced rule R of radius r < r* will have 
an invar iant  string different f rom P. Next  prove  that  the rule R of radius 
r = r* has string P as its unique invar iant  string. 

= P k - j  

is an invar iant  string of R different f rom P =  { P 0 " ' P ~ } .  Note  that  the 
string X is constructed so that  its first j +  m values coincide with those 
of P, but  the values to the right o f p j + m _  1 in string X are those that  follow 
Pm l in string P; i.e., the block {Pm' ' 'Pj+m 1} appears  twice in X. 
Since ( P o ' "  Pm- 1) matches  (p j . - .  Pj+m 1), every subtuple  of  length 2m + 
1 in X appears  also in P; that  is, locally (up to length 2m + 1), the string 
X appears  identical to P. Hence if the rule has radius r ~< m, the invar iant  
string P will not  be unique. The  case where r* -- r l ,  i > 0, and j + m - 1 = n 
is the same. 

N o w  suppose that  r* = r2, and assume that  m is the largest value such 
that  there exist a ma tch  between two tuples (Pi,"',Pi+m l) and 
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Define the set I to be 

{(X r''" Xo''" Xr)If(x-r, . . . ,  Xo,..., Xr) ~- X0} 

where f is the function defining the rule. From the construction of the 
induced rule, it is clear that set I consists of 

2 r tuples 

2 r -  1 tuples 

1 tuple 

2 ~- ~ tuples 

2 r tuples 

(*"" * Po'"P~) 

(*"" * Po"'P~+l) 

(Po ' "  Pr""  P2r) (4.2) 

(Pn--r a ' ' ' P ,  * ' ' '  *) 

(P, r ' ' ' P , * ' ' ' * )  

where, as always, * denotes both of the values 0 and 1. (Note that a given 
tuple may appear more than once in the above list.) Suppose that 
r =  r * =  r2, and let {q0q~ '"}  represent an invariant string of the rule. It 
will first be shown that qk = Pk for k = 0,..., r. 

Assume the contrary. Then from the definition of invariant strings, it 
must be true that 

�9 ""  * qo"" qr --* q0 (4.3) 

i.e., all 2 r tuples of length 2 r +  1 with (q0 ' ' ' q r )  as their final ( r +  1) values 
must belong to the set L The strategy of the proof is to show that the 
assumption 

(* P' P . . . .  P' qo'" " qr) e I (4.4) 

where p' r Po, leads to a contradiction. The first step is to show that the 
two tuples {* p . . . .  P' q o " '  qr } of length 2r + 1 must both appear in string 
P. Suppose {q0 ' ' ' q r}  matches {Pi'"P~+r} for some 0 < i ~ < r - - 1 .  Since 
P ' r  P0, relation (4.4) cannot be satisfied using any of the tuples in (4.2) 
with the "wild card" symbol * on the left. Next suppose {qo"" qs} matches 
{ P n - s ' " P , }  for s o m e 0 < ~ s < r .  If(4.4)  is to be true, t h e n p ,  s _ h = p ' f o r  
h =  1,..., r. Furthermore, suppose p . . . .  =c.  Then a tuple with its first 
( r +  1) elements equal to (c'p . . . .  P' qo) must belong to set /. This would 
imply that ms >~ r + 1, and hence r* r r 2, a contradiction. The conclusion is 
that relation (4.4) cannot be satisfied using any of the tuples in (4.2) with 
the "wild card" symbol * on the right, and hence the tuples 
{ * P ' " ' P '  qo ' "qr}  must appear in the string P for qo=pk,  r ~ k < ~ n - r .  
The length of the longest self-match must therefore be >~ 2r. The contradic- 
tion shows that { q o " ' q r }  matches {Po ' "P r} -  
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and 

Finally show that qr + ! = Pr + 1. Suppose that qr + ~ ~ Pr + 1" Then 

(* * q o q l ' ' ' q r q r + l )  

(* * q o q l ' ' ' q r @ + l )  

where q'r+l r q r + l ,  both belong to the set L But the (r + 1)-tuple ( q o ' " q r )  

cannot occur twice in P, since otherwise r* cannot equal r2. Hence 

q r + l = P r + l  �9 
By induction, the string {Po"" P,} is the only invariant string of the 

rule. The case for r * =  r 1 is similar. 

Corollary 7. Let R -  be the filtering rule of radius r* for which P is 
the unique invariant string. Then the number of iterations required for an 
arbitrary initial condition to evolve to its limiting state is bounded above 
by 

In(P) - 
r~ 11' 

where Ix ] '  denotes the smallest integer greater than or equal to x. 

R e m a r k .  In the context of pattern recognition, Theorem 7 provides 
the neighborhood size of the optimally efficient filtering rule that will 

Table II. Examples of Min imal  Radius Size Needed to Filter for  Given 
Patterns a 

Pattern Minimal radius 

111111 3 
011111 5 
000111 3 
010101 3 
001110 2 
001111 4 
1101011000110000 4 
String ofN l's (Neven) N/2 
String of M O's followed by N 

Nl ' s  (M<N, M +  Neven) 
Periodic string length N, period 1 + ( N -  p)/2 

p (N, p even) 

a The radius sizes shown are calculated using Theorem 7. Using these radii, filtering rules can 
be constructed such that the desired pattern is preserved, and all others annihilated. For any 
rule with radius less than that shown, the preserved patterns will not be unique. 
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pattern toberecognlzed: 011111 

input sequence: 
011101011011111101011100111000111011111010110111111000001001101010110000 

radius of ruleused: 2 

e v o l u t i o n  o f  automaton:  

011101011011111101011100111000111011111010110111111000001001101010110000 
Ol 1 0 0111111 Ol 10l 1 01 I011111 0 0111111 0 0 

0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 

radius of rule used: 3 

evolution of automaton: 

011101011011111101011100111000111011111010110111111000001001101010110000 
0 0111111 0 0 0 011111 0111111 

0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 

radius o f  r u l e  used: 4 

evolution of automaton: 

011101011011111101011100111000111011111010110111111000001001101010110000 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 
0111111 011111 0111111 

radlus o f  rule used: 5 

evolution of automaton: 

011101011011111101011100111000111011111010110111111000001001101010110000 
011111 011111 011111 
011111 011111 011111 
011111 011111 011111 
011111 011111 011111 
011111 011111 011111 
011111 011111 011111 

(a) 
Fig. 4. Examples of filtering for a given pattern using rules of varying neighborhood size. 
Each rule is uniquely constructed so as to guarantee that the pattern, together with the 
minimal possible number of other patterns, will be invariant under the rule. Theorem 7 
provides the minimal radius of the rule for which the pattern will be preserved and all strings 
annihilated. (a) The pattern to be recognized is the 16-bit long string 1101011000110000 
embedded in an arbitrary input sequence. Rules of radius varying from 1 to 4 are used to filter 
for the pattern. Theorem 7 states that the rule of radius 4 is the minimal-radius rule that 
annihilates all strings other than the desired pattern, (b) The pattern to be recognized is the 
six-bit long string 0111 ! 1. Theorem 7 states that the minimal-radius rule has radius 5. 
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pattern to be recognized: 1101011000110000 

input sequence: 
011101011011010110001100001110111101011000000100110101011000010101110000 

radius of r u l e  used: 1 

evolution o f  automaton: 

011101011011010110001100001110111101011000000100110101011000010101110000 
11101011011010110001100001110111101011000000100110101011000010101110000 
11101011011010110001100001110111101011000000100110101011000010101110000 
11101011011010110001100001110111101011000000100110101011000010101110000 
11101011011010110001100001110111101011000000100110101011000010101110000 
11101011011010110001100001110111101011000000100110101011000010101110000 
11101011011010110001100001110111101011000000100110101011000010101110000 

radius of rule used: 2 

evolution of automaton: 

011101011011010110001100001110111101011000000100110101011000010101110000 
1101011 1101011000110000 11 1101011000000 1101 10110000 10 1 0000 
11010 1101011000110000 1101011000000 ii 110000 O0 
ii0 1101011000110000 1101011000000 1 0000 
1 1101011000110000 1101011000000 O0 

1101011000110000 1101011000000 
1101011000110000 1101011000000 

radius of rule used: 3 

evolution of automaton: 

011101011011010110001100001110111101011000000100110101011000010101110000 
ii0101 1101011000110000 1 II01011000000 Ii0 0110000 000 
II0 Ii01011000110000 ii01011000000 0000 

ii01011000110000 Ii01011000000 0 
1101011000110000 1101011000000 
1101011000110000 1101011000000 
1101011000110000 1101011000000 

r a d i u s  o f  r u l e  u s e d :  4 

evolution of automaton: 

0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0  
1101 1101011000110000 110101 000 11 1 000 O0 

1101011000110000 11 
1101011000110000 
1101011000110000 
1101011000110000 
1101011000110000 

(b) 

Fig. 4 (continued) 
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preserve all occurrences of a desired pattern, and annihilate all others. In 
other words, once the minimal neighborhood size has been computed, the 
induced rule of that neighborhood size can be easily constructed, and then 
extended to provide a string-filtering rule of the same neighborhood size. 
This string-filtering rule has the property that within a finite number of 
iterations bounded above by the result in Corollary 7, arbitrary initial con- 
ditions are mapped to spatial sequences consisting of occurrences of the 
desired pattern, separated by blanks. Any string-filtering rule of a smaller 
neighborhood size will preserve patterns other than the desired pattern. 

Table II contains some examples of the size of the rule necessary and 
sufficient to guarantee that a particular string will be the unique invariant 
string. Figure 4a illustrates the recognition of the pattern 
{1101011000110000} using string-filtering rules with varying radii; Fig. 4b 
illustrates the same process for the pattern {011111 }. 

5. S U M M A R Y  

An invariant string of an automaton rule R is defined to be a finite 
spatial sequence of adjacent site values that remains invariant under the 
evolution of R, independent of the sequence's spatial position or the values 
of its neighboring sites. This paper has considered two aspects of invariant 
strings; namely, the existence of invariant strings for automata rules with a 
fixed neighborhood size (in particular, elementary, or nearest-neighbor, 
rules), and the identification of automata rules of unspecified neighborhood 
size for which an arbitrarily chosen string is invariant. With respect to the 
first question, it has been shown that there are 83 elementary rules for 
which invariant strings exist, and a complete specification of the set of 
invariant strings given for each such rule. The ordering of the sets of 
invariant strings serves as a basis for inducing an ordering of elementary 
rules possessing invariant strings. 

Automata rules for which invariant strings exist can be extended to 
define "filtering" rules defined with the same neighborhood size, but with 
the set of possible site values extended to include a "blank." Arbitrary finite 
initial conditions are then mapped in finite time to spatial sequences con- 
sisting of invariant strings for the original automata, separated by blanks. 
The invariant strings in the limiting spatial sequence appear precisely 
where they did in the initial condition. Thus concatenations of invariant 
strings together with blanks constitute, for these rules, the only attractors 
of the automata. 

Finally, the concept of the "longest self-match" in an arbitrary string 
has been introduced. The longest self-match is defined to be the longest 
tuple that occurs more than once in the string. It has been shown that the 
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length of the longest self-match characterizes the minimal neighborhood 
size of the rule for which the given string will represent the unique 
invariant string. Thus, for the filtering rule obtained by extending this 
"minimal-radius" rule, every initial condition evolves to a spatial sequence 
composed of occurrences of the given string, separated by blanks. 
Moreover, the automaton attains its limiting state in a finite number of 
steps bounded above by a quantity depending only on the invariant string 
itself. 

The results of this paper can be viewed as describing certain pattern- 
recognizing capabilities of one-dimensional cellular automata. Given a 
specific pattern embedded in an arbitrary input sequence, a rule of any 
given neighborhood size can be chosen that preserves that pattern, along 
with a well-defined set of related patterns, and annihilates all others. 
Furthermore, a rule of minimal neighborhood size, representing an 
optimally efficient filter, can be chosen to ensure that the desired pattern 
will be the only pattern preserved by the automaton. 

It is noteworthy that the study of invariant strings represents a 
problem that relies heavily, in its formulation and solution, on 
mathematical features of discreteness and local interaction peculiar to 
cellular automata. For example, the specification of all automata for which 
a given string is invariant represents a problem that would not be well- 
posed in the context of, say, differential equations. The results on invariant 
strings thus provide further evidence of the mathematical richness as well 
as the computational applicability of cellular automata theory. 

ACKNOWLEDGMENTS 

I thank Stephen Wolfram and George Zweig for useful discussions. 

REFERENCES 

1. J. yon Neumann, Theory of Self-reproducing Automata, A. W. Burks, ed. (Univ. Illinois 
Press, Urbana, 1966). 

2. D. Farmer, T. Toffoli, and S. Wolfram, eds, "Cellular Automata: Proceedings of an Inter- 
disciplinary Workshop," Physica 10D (1-2) (1984). 

3. S. Wolfram, Physica 10D:I (1984). 
4. E. Jen, "Global properties of cellular automata," J. Star. Phys. 43:219 (1980). 
5. S. Wolfram, Comm. Math. Phys. 96:15 (1984). 


